ATENEO Magisterial Lecture series

Weaving Mathematics

MA. LOUISE ANTONETTE N. DE LAS PEÑAS, PHD DEPARTMENT OF MATHEMATICS ATENEO DE MANILA UNIVERSITY

MA. LOUISE ANTONETTE N. DE LAS PEÑAS, PHD DEPARTMENT OF MATHEMATICS ATENEO DE MANILA UNIVERSITY

Weaving Mathematics

BED KEKEM

WEAVING MATHEMATICS

Image from Paterno et al (2001)

This star is symmetric.

It looks the same from different positions.

• It looks the same from different positions.

• Some of its parts are repeated.

- It looks the same from different positions.
- Some of its parts are repeated.

Rotating the star 90^o clockwise sends the star to itself.

- It looks the same from different positions.
- Some of its parts are repeated.

The 90° rotation is called a SYMMETRY of the star.

Reflecting the star about the vertical axis sends the star to itself.

Reflecting the star sends the star to itself. The reflection is also a SYMMETRY of the star.

SYMMETRY

A symmetry of an object in the plane is an isometry of the plane that sends the object to itself.

SYMMETRY

A symmetry of an object in the plane is an isometry of the plane that sends the object to itself.

How many symmetries does the star have?

HOW MANY SYMMETRIES DOES THE STAR HAVE?

It has 4 rotational symmetries. There is the rotation about its center by 0^0 , 90^0 , 180°, and 270°.

HOW MANY SYMMETRIES DOES THE STAR HAVE?

It also has 4 reflection symmetries.

HOW MANY SYMMETRIES DOES THE STAR HAVE?

The four rotations and 4 reflections form a group, the symmetry group of the star.

A repeated pattern in the plane has

translational symmetries in two directions.

THE HONEYCOMB TILING

A repeated pattern in the plane has translational symmetries in two directions.

A repeated pattern in the plane has translational symmetries in two directions.

A REPEATED PATTERN IN THE PLANE HAS TRANSLATIONAL SYMMETRIES IN TWO DIRECTIONS.

This pattern also has rotation symmetries.

A REPEATED PATTERN IN THE PLANE HAS TRANSLATIONAL SYMMETRIES IN TWO DIRECTIONS.

This pattern also has

- rotation symmetries
- reflection symmetries

A REPEATED PATTERN IN THE PLANE HAS TRANSLATIONAL SYMMETRIES IN **TWO DIRECTIONS.**

- This pattern has
- rotation symmetries
- reflection symmetries
- glide reflection symmetries

THE SEVENTEEN REPEATED PATTERNS

blog.artlandia.com

₩ ₩ ₩ ₩ ₩ ₩ ₽ ₩	$\begin{array}{c} \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$	$\begin{array}{c} X & X \\ X & X \\ X & X \\ X & X \\ X \\ x & X \\ x \\$	p2
XX XX XX	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + +	
$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ 31 m \end{array}$	$\begin{array}{c} \swarrow & \swarrow \\ \swarrow & \swarrow \\ \swarrow & \swarrow \\ \swarrow & \swarrow \\ & \swarrow \\ & \swarrow \\ & \searrow \\ & p_6 \end{array}$, ★, ★ , ★, ★ , ★, ★ _{p6m}	From Speiser, 1973 Reproduced with Artlandia SymmetryWorks

A REPEATED PATTERN WITH SYMMETRY GROUP P4M

LATTICE OF A REPEATED PATTERN

LATTICE AND UNIT CELL OF A REPEATED PATTERN

LAKE SEBU, COTABATO

THE T'BOLI, THE DREAMWEAVER

IKAT, A DECORATIVE DYEING METHOD OF WEAVING

THE TYING PROCESS

THE WEAVING PROCESS

The Bed Kekem has • reflection symmetries • 180⁰ rotation symmetries

Its symmetry group is the plane crystallographic group pmm.

Image from Paterno et al (2001)

The Tofi Kemmu has: • reflection symmetries • 180^o rotation symmetries • glide reflection symmetries

Its symmetry group is the plane crystallographic group pmg.

The Doun Basag Senko has: • reflection symmetries • glide reflection symmetries

Its symmetry group is the plane crystallographic group cm.

Image from Paterno et al (2001)

The Gondong Tahu has: • reflection symmetries • 180^o rotation symmetries • glide reflection symmetries

Its symmetry group is the plane crystallographic group cmm.

PATTERNS WITH A RHOMBIC LATTICE

THE KNOTTING PROCESS

Photo by Jojo Vito from happytrip.com

TWO GENERATIONS OF DREAMWEAVERS: LANG AND SEBULAN DULAY

Image from Paterno et al (2001)

WEAVERS OF MATHEMATICS

May 26, 2019, Lake Sebu Cotabato

References

- 51: 456-469.
- Makati City: Bookmark.
- Schattschneider, D. (1978). The Plane Symmetry Groups: Their and • 439-450.
- Tapp, K. (2012). Symmetry, a Mathematical Exploration. Springer.

De las Peñas, M.L.A., Garciano, A. and Verzosa, D. (2018). Crystallographic Patterns in Philippine Indigenous Textile. Journal of Applied Crystallography

Paterno, M., Castro, S., Javellana, R. & Alvina, C. (2001). Dreamweavers.

Recognition and Notation. The American Mathematical Monthly 85-6: